Triangulum harmonicum[1] Godefridus Guilielmus Leibnitius triangulo arithmetico Pascaliano simile fecit:
1 1 2 1 2 1 3 1 6 1 3 1 4 1 12 1 12 1 4 1 5 1 20 1 30 1 20 1 5 1 6 1 30 1 60 1 60 1 30 1 6 1 7 1 42 1 105 1 140 1 105 1 42 1 7 1 8 1 56 1 168 1 280 1 280 1 168 1 56 1 8 ⋮ ⋮ ⋮ {\displaystyle {\begin{array}{cccccccccccccccccc}&&&&&&&&&1&&&&&&&&\\&&&&&&&&{\frac {1}{2}}&&{\frac {1}{2}}&&&&&&&\\&&&&&&&{\frac {1}{3}}&&{\frac {1}{6}}&&{\frac {1}{3}}&&&&&&\\&&&&&&{\frac {1}{4}}&&{\frac {1}{12}}&&{\frac {1}{12}}&&{\frac {1}{4}}&&&&&\\&&&&&{\frac {1}{5}}&&{\frac {1}{20}}&&{\frac {1}{30}}&&{\frac {1}{20}}&&{\frac {1}{5}}&&&&\\&&&&{\frac {1}{6}}&&{\frac {1}{30}}&&{\frac {1}{60}}&&{\frac {1}{60}}&&{\frac {1}{30}}&&{\frac {1}{6}}&&&\\&&&{\frac {1}{7}}&&{\frac {1}{42}}&&{\frac {1}{105}}&&{\frac {1}{140}}&&{\frac {1}{105}}&&{\frac {1}{42}}&&{\frac {1}{7}}&&\\&&{\frac {1}{8}}&&{\frac {1}{56}}&&{\frac {1}{168}}&&{\frac {1}{280}}&&{\frac {1}{280}}&&{\frac {1}{168}}&&{\frac {1}{56}}&&{\frac {1}{8}}&\\&&&&&\vdots &&&&\vdots &&&&\vdots &&&&\\\end{array}}}